J. Ipaktschi, T. Eckert

LiClO₄-Promoted Addition of Alkyl Grignard and Alkynyllithium Reagents to Ketones. Comparison of a 5 M LiClO₄/Diethyl Ether Solution with CeCl₃

Junes Ipaktschi* and Thomas Eckert

Institut für Organische Chemie der Universität Gießen, Heinrich-Buff-Ring 58, D-35392 Gießen, Germany

Received June 23, 1995

Key Words: Nucleophilic addition / Lewis acid / Enolizable ketones / Alkyl Grignard / Alkynyllithium reagent

The influence of a 5 M ethereal LiClO₄ solution as solvent on the addition of different alkyl Grignard and alkynyllithium reagents to highly enolizable ketones was studied. A comparison with the results in the presence of ${\rm CeCl_3}$ shows a similar improvement in the yield.

Cerium(III) chloride promotes the addition of organolithium and Grignard compounds to ketones by suppression of enolization, aldol condensation, and reduction^[1]. Enhanced reactivity was observed regardless of whether CeCl₃ was first added to the organometalic reagent or to the ketone solution^[2]. Ethereal solvents such as tetrahydrofuran (THF) or 1,2-dimethoxyethane (DME) were the solvents of choice^[1a]. Addition products could be prepared by this simple procedure in yields as high as 99%, even though the yield was zero in the absence of the lanthanide salt^[1].

Two arguments have been discussed for the improvement in yield caused by the addition of CeCl₃: On the one hand, it is postulated that primarily an organocerium compound is generated. However, no systematic studies of the structures of these organocerium reagents have been performed so far. These reagents are presumed to be σ-bonded R-CeCl₂ or ate complexes (RCeCl₃)^{-[1a,3]}. Other possibilities, such as weakly associated complexes RLi · CeCl₃ or RMgX · CeCl₃, however, cannot be excluded^[1a]. On the other hand, it is postulated that CeCl₃ simply serves as a strongly oxophilic Lewis acid that effectively activates the carbonyl compound for the nucleophilic addition reaction by coordination, thus suppressing side reactions^[2,4]. Recently, it was shown, that Grignards reagents react in the presence of anhydrous CeCl₃ effectively with 1,3-diketones to produce the corresponding β-hydroxy ketone in high yields^[4a]. However, with "pregenerated" organocerium reagents it was not possible to obtain the expected β-hydroxy ketone. In most experiments only the starting materials were recovered [4a].

In order to gain more information on the role of CeCl₃ in the activation of carbonyl compounds, we studied the addition reactions of different alkyl Grignard compounds and alkynyllithium reagents with highly enolizable ketones in concentrated ethereal LiClO₄ solution and compared the results with reactions performed in the presence of CeCl₃ in THF. LiClO₄, like CeCl₃ is also a highly oxophilic Lewis acid, especially when concentrated solutions are used^[5]. Ethereal solutions of LiClO₄ could be prepared in concen-

trations of up to approximately 6 M at 30°C^[6]. Due to the high polarity and the extremely high concentration of lithium ions, these solutions are excellent media for polar reactions. The usefulness of concentrated ethereal solutions of LiClO₄ was successfully demonstrated by the addition of different reagents such as ketene acetals^[7], allylstannane^[5,8], or trimethylsilyl cyanide^[7,9] to the carbonyl compounds. Our results demonstrate a high degree of similarity between anhydrous CeCl₃ and LiClO₄ concerning the improvement in the yield obtained by the addition of organometallic reagents to ketones.

Results and Discussion

The reaction of dibenzyl ketone (1) with two equivalents of the lithium phenylacetylide (2) in THF at 0°C afforded after 2 h the alcohol 3 in 29% yield. The yield increased to 99% when the addition of the acetylide was carried out for 15 min in 5 M LiClO₄/diethyl ether as the reaction medium. A similar improvement in the yield (98%, 30 min reaction time) was achieved in THF at 0°C in the presence of two equivalents of CeCl₃ as activator.

The yield of the alcohols 6 and 7 obtained by the addition of acetylide 2 to indanones 4 and 5, respectively, was also significantly increased by using 5 M LiClO₄/diethyl ether as reaction medium and is quite comparable to results obtained in the presence of anhydrous CeCl₃. Similarly comparable is the yield of the alkohols 9 and 11 obtained by the addition of 2 to the ketones 8 and 10, when the reaction was carried in the presence of CeCl₃ or in 5 M

J. Ipaktschi, T. Eckert

 $LiClO_4$ /diethyl ether as solvent. In Table 1 the results are summarized. Obviously, there is a direct proportionality between the p K_8 values of the ketones and the improvement of the product yield by $CeCl_3$ or $LiClO_4$. The higher the acidity of the ketones, the lower is the yield of the inactivated addition of acetylides and the more pronounced is the increase of the yield in the presence of $CeCl_3$ or $LiClO_4$ ^[10].

A remarkable increase of the yield by means of 5 M ethereal solution of LiClO₄ was also observed in the addition of *n*-butylmagnesium bromide to dibenzyl ketone as well as to β-tetralone or by the addition of isopropylmagnesium chloride to cyclohexanone. Although this improvement of the yield by 5 M LiClO₄ was lower compared to the reactions performed in the presence of CeCl₃ in the case of β-tetralone (see Table 2). Similar to CeCl₃ also 5 M ethereal LiClO₄ suppresses the reduction of 2,4-dimethyl-3-pentanone during the addition of *n*-propylmagnesium bromide in favor of the addition product. Presumably, due to higher sterical demand, LiClO₄ shows no effect on the ratio of addition to reduction product in the reaction of 2,4-dimethyl-3-pentanone with isopropylmagnesium bromide^[11]. In this case CeCl₃ is superior to LiClO₄.

This work was supported by the Fonds der Chemischen Industrie, Frankfurt/M.

Table 1. Addition of lithium phenylacetylide (2) to ketones 1, 4, 5, 8 and 10

Ketone	Medium	Temp. (°C)	Time (h)	Product	yield (%)
1	LiClO ₄ /Ether	20	0.25	3	99
1	CeCl ₃ /THF	0	0.5	3	98
1	THF	0	2	3	29
4	LiClO ₄ /Ether	20	0.25	6	71
4	CeCl ₃ /THF	0	0.5	6	77
4	THF	0	2	6	40
5	LiClO ₄ /Ether	20	0.25	7	70
5	CeCl ₃ /THF	0	0.5	7	7 3
5	THF	0	2	7	45
8	LiClO ₄ /Ether	20	0.25	9	42
8	CeCl ₃ /THF	0	0.5	9	44
8	THF	0	2	9	16
10	LiClO ₄ /Ether	20	0.25	11	97
10	CeCl ₃ /THF	0	0.5	11	99
10	THF	0	2	11	66

Experimental

Elemental analyses: Carlo Erba Modell 1104. – IR: Bruker IFS 25. – UV: Hewlett-Packard 8452A Diode array spectrophotometer. – ¹H and ¹³C NMR: Bruker AM 400 or AC 200, respectively. – MS: Varian MAT 311A or Varian MAT 111. – LiClO₄ (Fluka) was dried at 140 °C for 24 h at 0.5 Torr. Perfluoro-1-octane-sulfonyl fluoride and 4-chromanone (Aldrich), 2-hydroxyacetophenone and phenylacetylene (Janssen), 7-hydroxyindanone^[12], and bis(triphenylphosphane)palladium(II) chloride^[13]. All reactions were carried out under argon.

General Method for Preparation of 7-(Phenylethynyl)-1-indanone (5) and 2-(Phenylethynyl) acetophenone (10): 10 mmol of 7-hydroxyindanone or 2-hydroxyacetophenone, 5.53 g (11 mmol) of perfluoro-1-octanesulfonyl fluoride, 1.2 g (15 mmol) of phenylacetylene, 210 mg (3 mol-%) of bis(triphenylphosphane)palladium(II) chloride, and 115 mg (6 mol-%) of CuI were heated at 80°C for 20 h in a mixture of 10 ml of DMF and 10 ml of triethylamine. After addition of 80 ml of a 0.5 N HCl solution the organic layer was extracted with diethyl ether. The ethereal phase was washed with water and dried with MgSO₄. After removal of the solvent the crude product was purified by silica gel column chromatography (CH₂Cl₂). Yield: 1.74 g (75%) of 5, m.p. 67 °C. – IR (KBr pellet): $\tilde{v} = 3060 \text{ cm}^{-1} \text{ (aryl-H)}, 2978 \text{ (alkyl-H)}, 2209 \text{ (C=C)}, 1714 \text{ (C=O)},$ 1597, 1582 (C≡C), 1491, 779, 763, 693. – UV (ethanol): λ_{max} $(\lg \varepsilon) = 230 \text{ nm} (4.26), 246 (4.33), 280 (4.00), 288 (4.04), 296 (4.17),$ 332 (4.09). $- {}^{1}H$ NMR (CDCl₃): $\delta = 2.7 - 2.66$ (m, 2H), 3.10 - 3.05(m, 2H), 7.36-7.31 (m, 3H), 7.38 (d, 1H), 7.46 (d, 1H), 7.49 (dd, 1 H), 7.65-7.62 (m, 2 H). $- {}^{13}$ C NMR (CDCl₃): $\delta = 25.28$ (CH₂), 36.44 (CH₂), 86.64 (C), 95.47 (C), 120.33 (C), 123.14 (C), 126.26 (CH), 128.27 (2 \times CH), 128.62 (CH), 131.55 (CH), 132.05 (2 \times CH), 133.64 (CH), 136.36 (C), 155.69 (C), 204.61 (C=O). - MS (70 eV), mlz (%): 232 (100), 202 (41). - $C_{17}H_{12}O$: calcd. 232.0900; found 232.0875 (MS). - C₁₇H₁₂O (232.3): calcd. C 87.90, H 5.21; found C 88.20, H 5.16.

Ketone **10**: 1.35 g (61%), light yellow oil. − IR (neat): \tilde{v} = 3060 cm⁻¹ (aryl-H), 2932 (alkyl-H), 2215 (C≡C), 1686 (C=O), 1592 (C=C), 1490, 1357, 1279, 1246, 757, 681. − UV (ethanol): λ_{max} (lg ε) = 204 nm (4.37), 222 (4.28), 248 (4.27), 290 (4.20), 308 (3.96). − ¹H NMR (CDCl₃): δ = 2.79 (s, 3 H), 7.38−7.33 (m, 3 H), 7.39 (ddd, 1 H), 7.46 (ddd, 1 H), 7.58−7.51 (m, 2 H), 7.62 (dd, 1 H), 7.75 (dd, 1 H). − ¹³C NMR (CDCl₃): δ = 29.94 (CH₃), 88.46 (C), 95.01 (C), 121.67 (C), 122.88 (C), 128.24 (CH), 128.43 (CH), 128.65 (2 × CH), 128.72 (CH), 131.24 (CH), 131.49 (2 × CH), 133.84 (CH),

Ketone	Grignard	Medium	Temp. (°C)	Time (h)	Product(s)	yield (%)
1	n-C ₄ H ₉ MgBr	LiClO ₄ /Et ₂ O	20	0.25	(PhCH2)2C(OH)(n-C4H9)a)	74
1	n-C ₄ H ₉ MgBr	CeCl ₃ /THF	0	0.5	$(PhCH_2)_2C(OH)(n-C_4H_9)^{a}$	82
1	n-C ₄ H ₉ MgBr	THF ^[14]	0	2	$PhCH_{2})_{2}C(OH)(n-C_{4}H_{9})^{a}$	20
β-Tetralone	n-C ₄ H ₉ MgBr	LiClO ₄ /Et ₂ O	20	0.25	(\pm) - β - $(n$ -C ₄ H ₉)- β -Tetralol ^{a)}	37
β-Tetralone	n-C ₄ H ₉ MgBr	CeCl ₃ /THF	0	0.5	(\pm) - β - $(n$ -C ₄ H ₉)- β -Tetralol ^{a)}	75
β-Tetralone	n-C ₄ H ₉ MgBr	THF ^[14]	0	2	(\pm) - β - $(n$ - $C_4H_9)$ - β - $Tetralol^a$	6
Cyclohexanone	i-C ₃ H ₇ MgCl	LiClO ₄ /Et ₂ O	20	0.25	1-(i-C ₃ H ₇)-Cyclohexanol ^{b)}	63
Cyclohexanone	i-C ₃ H ₇ MgCl	CeCl ₃ /THF ^[2]	0	0.5	1-(i-C ₃ H ₇)-Cyclohexanol ^{b)}	72
Cyclohexanone	i-C ₃ H ₇ MgCl	$THF^{[2]}$	0	2	1-(i-C ₃ H ₇)-Cyclohexanol ^{b)}	30
(i-C ₃ H ₇) ₂ CO	n-C ₃ H ₇ MgBr	LiClO ₄ /Et ₂ O	20	0.25	$(i-C_3H_7)_2C(OH)(n-C_3H_7)^{b)}$	71
	-				(i-C ₃ H ₇) ₂ CH(OH) ^{b)}	29
(i-C ₃ H ₇) ₂ CO	n-C ₃ H ₇ MgBr	CeCl3/THF	0	0.5	$(i-C_3H_7)_2C(OH)(n-C_3H_7)^{b)}$	25
(i-C ₃ H ₇) ₂ CO	n-C ₃ H ₇ MgBr	THF	0	2	$(i-C_3H_7)_2C(OH)(n-C_3H_7)^{b)}$	35
					(i-C ₃ H ₇) ₂ CH(OH) ^{b)}	65
(<i>i</i> -C ₃ H ₇) ₂ CO	i-C ₃ H ₇ MgCl	LiClO ₄ /Et ₂ O	20	0.25	(<i>i</i> -C ₃ H ₇) ₃ C(OH) ^{b)}	9
					(i-C ₃ H ₇) ₂ CH(OH) ^{b)}	56
(<i>i</i> -C ₃ H ₇) ₂ CO	i-C ₃ H ₇ MgCl	CeCl ₃ /THF ^[2]	0	0.5	(i-C ₃ H ₇) ₃ C(OH) ^{b)}	52
					(i-C ₃ H ₇) ₂ CH(OH) ^{b)}	31
(<i>i</i> -C ₃ H ₇) ₂ CO	i-C ₃ H ₇ MgCl	THF ^[2]	0	2	(i-C ₃ H ₇) ₃ C(OH) ^{b)}	3
					(i-C ₃ H ₇) ₂ CH(OH) ^{b)}	58

Table 2. Addition of Grignard reagents to ketones

140.79 (C), 200.26 (C=O). – MS (70 eV), m/z (%): 220 (83), 205 (100), 176 (40). – $C_{16}H_{12}O$: calcd. 220.0888; found 220.0877 (MS). – $C_{16}H_{12}O$ (220.3): calcd. C 87.25, H 5.49; found C 87.05, H 5.21.

General Procedure for the Reaction of the Ketones 1, 4, 5, 8, and 10 with Lithium Phenylacetylide in 5 M LiClO₄/Diethyl Ether: A solution of 0.216 g (2 mmol) of the acetylide in 5 ml of 5 M LiClO₄/diethyl ether was added to 1 mmol of the ketone in 4 ml of 5 M LiClO₄ in diethyl ether at 20 °C. After 15 min, 50 ml of a saturated NH₄Cl solution was added. The Product was extracted with diethyl ether, the extract washed with a saturated NaCl solution and dried with MgSO₄.

1,3-Diphenyl-2-(phenylethynyl)-2-propanol (3): 309 mg (99%), light yellow oil after chromatography on neutral Al₂O₃ (diethyl ether/pentane, 3:1). — IR (neat): $\tilde{v}=3441~\text{cm}^{-1}$ (OH), 3061, 3029 (aryl-H), 2921 (alkyl-H), 2228 (C≡C), 1599 (C=C), 1494, 1454, 1085 (C−O), 1031, 756, 701. — UV (ethanol): λ_{max} (lg ϵ) = 210 nm (4.41), 244 (4.25), 254 (4.18). — ¹H NMR (CDCl₃): δ = 2.13 (s, 1 H), 3.10 (s, 4 H), 7.36–7.26 (m, 11 H), 7.43–7.39 (m, 4 H). — ¹³C NMR (CDCl₃): δ = 48.23 (2 × CH₂), 71.52 (C), 87.10 (C), 91.15 (C), 122.70 (C), 126.94 (2 × CH), 128.03 (4 × CH), 128. 32 (CH), 130.97 (4 × CH), 131.47 (2 × CH), 136.28 (2 × C). — MS (70 eV), m/z (%): 312 (3), 294 (6), 221 (80), 129 (46), 91 (100). — C₂₃H₂₀O: calcd. 312.1514; found 312.1508 (MS). — C₂₃H₂₀O (312.4): calcd. C 88.42, H 6.45; found C 88.15, H 6.19.

1-(Phenylethynyl)-1-indanol (6): 166 mg (71%), light yellow oil after chromatography on neutral Al₂O₃ (diethyl ether). – IR (neat): \tilde{v} = 3372 cm⁻¹ (OH), 3068 (aryl-H), 2974, 2935 (alkyl-H), 2226 (C≡C), 1598 (C=C), 1490, 1070, 1039, 944, 757, 691. – UV (ethanol): λ_{max} (lg ε) = 204 nm (4.35), 244 (4.21), 254 (4.14), 272 (3.10). – ¹H NMR (CDCl₃): δ = 2.33 (s, 1 H), 2.56–2.49 (m, 1 H), 2.70–2.61 (m, 1 H), 3.00–2.91 (m, 1 H), 3.21–3.11 (m, 1 H), 7.32–7.26 (m, 6 H), 7.46–7.42 (m, 2 H), 7.62–7.56 (m, 1 H). – ¹³C NMR (CDCl₃): δ = 29.64 (CH₂), 43.27 (CH₂), 76.79 (C), 84.91

(C), 91.06 (C), 122.66 (C), 123.28 (CH), 125.08 (CH), 127.13 (CH), 128.23 (CH), 128.38 (2 × CH), 129.02 (CH), 131.72 (2 × CH), 143.08 (C), 145.78 (C). – MS (70 eV), mlz (%): 234 (4), 233 (7), 215 (83). – $C_{17}H_{14}O$: calcd. 234.1045; found 234.1031 (MS). – $C_{17}H_{14}O$ (234.3): calcd. C 87.15, H 6.02; found C 86.99, H 5.85.

1,7-Bis(phenylethynyl)-1-indanol (7): 234 mg (70%), light yellow oil after chromatography on neutral Al₂O₃ (CH₂Cl₂). – IR (neat): $\tilde{v} = 3550 \text{ cm}^{-1}$, 3440 (OH), 3054 (aryl-H), 2946 (alkyl-H), 2210 (C=C), 1599 (C=C), 1491, 1443, 1070, 755, 690. – UV (ethanol): λ_{max} (lg ε) = 205 nm (4.57), 226 (4.49), 248 (4.34), 274 (4.14), 288 (4.29), 296 (4.17), 306 (4.25). – ¹H NMR (CDCl₃): $\delta = 2.59 - 2.50$ (m, 1H), 2.86-2.78 (m, 1H), 3.12-2.96 (m, 2H), 3.52 (s, 1H),7.33-7.18 (m, 8 H), 7.37-7.34 (m, 2 H), 7.43 (d, 1 H), 7.55-7.50 (m, 2 H). $- {}^{13}$ C NMR (CDCl₃): $\delta = 29.32$ (CH₂), 42.11 (CH₂), 76.95 (C), 85.37 (C), 86.16 (C), 91.00 (C), 95.58 (C), 118.38 (C), 122.79 (C), 122.89 (C), 125.47 (CH), 128.10 (2 \times CH), 128.17 (2 \times CH), 128.37 (CH), 128.60 (CH), 128.75 (CH), 130.83 (CH), 131.59 $(2 \times CH)$, 131.76 $(2 \times CH)$, 143.14 (C), 146.38 (C). – MS (70 eV), m/z (%): 334 (100), 315 (63). - $C_{25}H_{18}O$: calcd. 334.1357; found 334.1448 (MS). $-C_{25}H_{18}O$ (334.4): calcd. C 89.79, H 5.42; found C 89.99, H 5.52.

4-(Phenylethynyl)-4-chromanol (9): 105 mg (42%), light yellow oil after chromatography on neutral Al₂O₃ (diethyl ether). – IR (neat): $\tilde{v} = 3448$ cm⁻¹ (OH), 3060 (aryl-H), 2965, 2928 (alkyl-H), 2216 (C≡C), 1607, 1582 (C=C), 1488, 1452, 1224, 1107, 1053, 756, 691. – UV (ethanol): λ_{max} (lg ε) = 206 nm (4.67), 244 (4.43), 252 (4.40), 278 (3.77), 284 (3.71). – ¹H NMR (CDCl₃): δ = 2.40 – 2.24 (m, 4 H), 2.50 (s, 1 H), 6.77 – 6.72 (dd, 1 H), 6.88 – 6.83 (ddd, 1 H), 7.15 (ddd, 1 H), 7.22 – 7.17 (m, 3 H), 7.36 – 7.31 (m, 2 H), 7.65 – 7.62 (dd, 1 H). – ¹³C NMR (CDCl₃): δ = 37.27 (CH₂), 62.42 (CH), 64.21 (C), 84.86 (C), 91.54 (C), 117.31 (CH), 120.86 (CH), 122.36 (C). 125.26 (C), 128.30 (3 × CH), 128.60 (CH), 130.15 (CH), 131.73 (2 × CH), 153.53 (C). – MS (70 eV), m/z (%): 250 (15),

a) Isolated yields. – b) Yields determined by ¹H NMR and GC MS.

J. Ipaktschi, T. Eckert

232 (100). $-C_{17}H_{14}O_2$: calcd. 250.0994; found 250.0984 (MS). $-C_{17}H_{14}O_2$ (250.3): calcd. C 81.58, H 5.64; found C 81.45, H 5.51.

I-(Phenylethynyl)-I-[2-(phenylethynyl)phenyl]ethanol (11): 312 mg (97%), light yellow oil after chromatography on neutral Al₂O₃ $(CH_2Cl_2/pentane, 1:1)$. – IR (neat): $\tilde{v} = 3416 \text{ cm}^{-1}$ (OH), 3057 (aryl-H), 2981, 2931 (alkyl-H), 2232 (C≡C), 1598 (C=C), 1491, 1442, 1069, 755, 690. – UV (ethanol): $\lambda_{\text{max}} (\lg \varepsilon) = 222 \text{ nm } (4.13)$, 244 (4.17), 254 (4.17), 272 (4.00), 286 (4.17), 294 (4.03), 304 (4.15). - ¹H NMR (CDCl₃): $\delta = 2.01$ (s, 3 H), 3.59 (s, 1 H), 7.13-7.05 (m, 3 H), 7.21-7.13 (m, 4 H), 7.29-7.21 (m, 3 H), 7.44-7.39 (m, 2 H), 7.51 (dd, 1 H), 7.68 (dd, 1 H). $- {}^{13}$ C NMR (CDCl₃): $\delta =$ 30.12 (CH₃), 69.84 (C), 84.50 (C), 88.47 (C), 92.41 (C), 96.59 (C), 120.25 (C), 122.73 (C), 123.02 (C), 124.75 (CH), 127.48 (CH), $128.10 (2 \times CH)$, $128.20 (2 \times CH)$, $128.37 (2 \times CH)$, 128.51 (CH), 131.36 (2 \times CH), 131.71 (2 \times CH), 134.13 (CH), 146.37 (C). MS (70 eV), m/z (%): 322 (43), 321 (100), 307 (78). - $C_{24}H_{18}O$: calcd. 322.1358; found 322.1325 (MS). $-C_{24}H_{18}O$ (322.4): calcd. C 89.41, H 5.63; found C 89.17, H 5.33.

General Procedure for the Reaction of the Ketones 1, 4, 5, 8, and 10 with Lithium Phenylacetylide in the Presence of CeCl₃: 745 mg (2 mmol) of CeCl₃: 7 H₂O (Fluka) was dried at 140 °C and 0.5 Torr for 4h, then cooled to 0 °C and stirred with 4 ml of THF for 12 h. After addition of 1 mmol of the respective ketone in 2 ml of THF and stirring of the mixture for 2 h, 2 mmol of phenylacetylide in 2 ml of THF was added. After 30 min, 20 ml of a saturated NH₄Cl solution was added. Further procedure as above. — 3: 306 mg (98%); 6: 180 mg (77%); 7: 245 mg (73%); 9: 110 mg (44%); 11: 319 mg (99%).

General Procedure for the Reaction of the Ketones 1, 4, 5, 8, and 10 with Lithium Phenylacetylide without a Lewis Acid in THF: 2 mmol of phenylacetylide in 2 ml of THF was added to a solution of 1 mmol of the respective ketone in 2 ml of THF at 0°C. After 2h, 20 ml of a saturated NH₄Cl solution was added. Further procedure as above. — 3: 91 mg (29%); 6: 96 mg (41%); 7: 150 mg (45%); 9: 40 mg (16%); 11: 213 mg (66%).

For reviews see: [11a] T. Imamoto in Comprehensive Organic Synthesis (Eds.: B. M. Trost, I. Fleming), Pergamon Press, Oxford, 1991, vol. 3, chapter 1.8, p. 231-250. - [1b] G. A. G. A. Molander, Chem. Rev. 1992, 92, 29-68. - [1b] K. H. Dötz, Nachr. Chem. Tech. Lab. 1990, 38, 1080-1084. - [1d] H. B. Kagan, J. L. Namy, Tetrahderon 1986, 42, 6573-6614.

² T. Imamoto, Y. Kamiya, J. Am. Chem. Soc. 1989, 111,

4392-4398

- [3] J. Bett, M. Heuschmann, Tetrahedron Lett. 1995, 36, 4043-4046; H. Quast, J. Carlson, H. Röschert, E.-M. Peters, K. Peters, H. F. von Schnering, Chem. Ber. 1992, 125, 2591-2611; H. Quast, J. Carlson, T. Herkert, R. Janiak, H. Röschert, E.-M. Peters, K. Peters, H. F. von Schnering, ibid. 1992, 125, 495-511; E. Ciganek, J. Org. Chem. 1992, 57, 4521-4527; T. Imamoto, T. Hatajima, K. Ogata, Tetrahedron Lett. 1991, 32, 2787-2790.
- [4] [4a] G. Bartoli, E. Marcantoni, M. Petrini, Angew. Chem. 1993, 105, 1115-1116 Angew. Chem. Int. Ed. Engl. 1993, 32, 1061. [4b] T. Imamoto, T. Kusumoto, M. Yokoyama, Tetrahedron Lett. 1983, 24, 5233-5236.
- [5] J. Ipaktschi, A. Heydari, H.-O. Kalinowski, Chem. Ber. 1994, 127, 905-909.
- Y. Pocker, J. C. Ciula, J. Am. Chem. Soc. 1988, 110, 2904-2909;
 K. Ekelin, L. G. Sillen, Acta Chem. Scand. 1953, 7, 987.
- J. Ipaktschi, A. Heydari, Chem. Ber. 1993, 126, 1905-1912; E.
 M. Carreira, R. A. Singer, Tetrahedron Lett. 1994, 35, 4323-4326
- [8] Y. Nishigaichi, N. Nakano, A. Takuwa, J. Chem. Soc., Perkin, Trans. 1, 1993, 1203-1204; K. J. Henry, Jr., P. A. Grieco, C. T. Jagoe, Tetrahedron Lett. 1992, 33, 1817-1820.
- [9] M. T. Reetz, A. Gansäuer, Tetrahedron 1993, 49, 6025-6030.
- $^{[10]}$ pK_s values of the α carbon-hydrogen bonds in DMSO: diphenylacetone = 18.7; indanone = 23.0; acetophenone = 24.7, and cyclohexanone = 26.4, see: F. G. Bordwell, J. A. Harrleson, Jr., Can. J. Chem. **1990**, 68, 1714–1718.
- [11] Concentrated LiClO₄ solution present a sterically demanding Lewis acid, see: J. Ipaktschi, A. Heydari, Chem. Ber. 1992, 125, 1513-1515.
- [12] D. B. Bruce, A. J. S. Sorrie, R. H. Thomson, J. Chem. Soc. 1953, 2403-2406.
- [13] R. F. Heck, Palladium Reagents in Organic Synthesis, Academic Press, London, 1985.
- [14] T. Imamoto, Y. Sugiura, N. Takiyama, Tetrahedron Lett. 1984, 25, 4233-4236.

[95178]